
Cognits: Writing Portable Code 1

Cognits: Writing Portable Code
Steven M. Lewis, Ph.D.

Member of the Technical Staff
Computer Systems Division

The Aerospace Corporation, El Segundo, Calif. 90245
slewis@aero.org

Abstract
Writing good, user friendly, graphical applications on the Macintosh is difficult . Even more
challenging is writing a single application capable of running across a number of GUIs. This
paper is a case study of the Cognits library, a portable class library that runs on the
Macintosh, X Windows and MS Windows . The discussion will specifically concentrate on
writing code that will port between the Macintosh and MS Windows. Three areas will be
addressed: the general principles in the design of portable systems.; corresponding features
of the Mac and Windows operating systems, especially drawing and interaction with the
user.;and unification of higher level functionality. The object of a portable library is to allow a
single collection of source code to compile into applications that will run under multiple
systems. While higher level code may manipulate system dependent structures, well
designed portable systems should not require changes in the text of code to generate
similar results. on multiple systems Cognits divides code into a system dependent layer and
a larger system independent layer. The system dependent interacts with the underlying GUI
and defines a ''virtual machine' used by high level, system independent code. The most
important step in designing portable code is to unify disparate conceptual views of elements
of the applications into a single uniform framework. Correspondences must be made
between elements of the two systems leading to a single integrated approach to drawing,
event handing and controls. Important decisions must be made concerning implementation
of controls, whether to use native or portable look and feel, and where in an application
events are handled. Finally, there are differences in the function of advanced features such
as standards dialogs and interprocess communication. This paper considers a number of
choices in implementing Cognits and presents code to implement many of the common
Macintosh drawing commands under Windows.

Introduction

The capabilities that the Macintosh
pioneered in 1984 are no longer unique. X
Windows (coupled with several overlying
window managers), NeXTStep, and
Microsoft Windows offer capabilities similar
to those on the Macintosh. Increasingly, we
are called upon to deliver applications that
will run on multiple platforms. This paper
examines the problems in writing code that
is portable across several platforms,
especially between Microsoft Windows and
the Macintosh.

Portability is a major design driver. It is
difficult to port an application that has not
been designed from the outset for
portability. The requirements of portability

must continually be in the mind of the
developer during the development of the
application. Portable applications always
represent a compromise. It may not be
possible to take full advantage of the
features of any one system if those features
are not offered or cannot be replicated on
other

Cognits: Writing Portable Code 2
systems. A portable application tends to be
written to the lowest common denominator.
When features are not available on one
system, the developer has three choices:
Decline to use those features, write code to
implement an appropriate facsimile or write
applications which, while using the features
when present, will perform adequately in
their absence, reducing its functionality to
accommodate available capabilities.

This paper examines the choices I made in
developing a portable class library and the
approach I took to allow the same code to
run on both Microsoft Windows and the
Macintosh. My general approach was to
define a portable API (Application Program
Interface) that could be implemented on top
of any target system. Higher level code
makes calls to this API without knowledge of
the underlying system. The proper use of
this approach requires significant
compromises but produces capable,
portable applications.

General Considerations in Writing
Portable Code

Several principles are involved in writing
portable code. First, divide the code into
two sections. The first portion is the code
that is aware of which system under which
it is running. This code must necessarily be
different for each different machine. It is the
only section supporting direct calls to the
underlying GUI. The second portion of the
code is system independent. This code may
include macros and structures that can vary
from system to system. The same text (with
system dependent definitions) must
operate properly on all systems. A major
objective is to minimize the size of the
system dependent code and maximize the
size of the code that can run under any
system. At each point the developer is
faced with decisions that determine
whether sections of code go in the system
dependent or the system independent
sections. Any code in the system dependent
portion must be replicated, validated and
maintained at least twice to assure not only
proper functionality but also equivalent
behavior on all systems.

System independent code considers
operations at a conceptual level rather than
an implementation level. Functionality is

presented in high level concepts rather than
the low level details to implement them.
Consider a few common operations. The
display of a popup menu consists of a
request to the user to choose among a
collection of names with the request
appearing at a location on the screen and
the return being either the name chosen or
NULL if no choice is selected. One may write
const char *ChoosePopUP(

const char **Choices,
short NChoices,
short DefaultChoice,
Point Location);

This command can easily be written on the
Macintosh to build a popup menu from an
array of choices, display it , get the
resultant choice, destroy the menu, and
return the resultant choice. The same
function can easily be written under
Windows. While the internal data types
used in the two implementations will be
quite different, the end result will be the
same. When this is the only way high level
code can use pop up menus, then that code
will be system independent.

Another example is file opening. All systems
support file manipulation with the standard
UNIX commands: fopen, fclose, fread,
fwrite. Here files are opened with a string
representing the path and manipulated with
a file pointer. A portable approach to file
manipulation would offer functions such as
shown below which return the name of an
existing file to pass to fopen:

char *GetExistingFileName(
const char *DirectoryName,
const char *DefaultFileName,
const char *Prompt,
Point Location)

Once again, SFGetFile can easily be used to
generate this call, translating the

Cognits: Writing Portable Code 3
selection into a full path name. The same
call can be implemented under Windows
using the standard windows dialogs. More
sophisticated calls can add filtering in a
system independent manner.

Note that all calls use portable data types
such as strings, Points, Rects and UNIX style
FILEs. In almost all cases, the developers
real intentions can be expressed in these
portable constructs. System dependent
constructs such as FSSpec or MenuHandles
are merely low level means of
implementing a request. It is not necessary
for higher level code to deal with these
constructs . Minimizing the fraction of the
code that needs to work at this level
enhances the portability and maintainability
of the resultant code. In my work, the
system independent code does not even
include any system dependent header files.
Standard C header files are available on all
systems and these are included. Direct
access to system traps or any fields in
system dependent structures such as
GrafPorts is not allowed. These practices
give the code a very generic look and feel.

The next general principle is to '"Just Say
No". An application that seeks to be
portable must offer similar services on all
target systems. If the application uses a
service such as the ListManager,
WorldScript or AppleEvents on one system,
it must usually find a way to offer similar
services on all systems. If similar
capabilities are not available on other
systems, the developer must code them
from more primitive operations. At the end
of this process, the developer has been
required to develop all the code to perform
the service in order to satisfy the needs of
the most limited system. Once the code is
running well there is a strong argument to
use the developed code on all systems
since this moves the code from the system
dependent to the system independent
portion of the application. In the current
version of Cognits, TextFields are
implemented by using more primative calls
for greater control and portability. (see
below). The utilization of features not
available on all target systems should be
avoided, especially in critical sections of the
application.

A third principle is to generalize function.

Interprocess communication is available on
all systems. DDE's (A Windows specific
interprocess communication scheme) and
AppleEvents are not. In developing portable
code, the developer needs to create a
common model that can utilize or create
features common to both modes of
interprocess communication. It is not
necessary for a portable application to use
all available features even within
AppleEvents or DDE's. It is, however,
necessary that a rich enough feature set be
offered to allow applications to achieve
needed functionality.

Fourth, some compromises must be
accepted. There is no easy way to draw text
under Windows with a pattern pen. A file's
extension may be used to represent data
type under Windows but there is no easy
way to represent the file's creator. On the
other hand, Pulldown Menus under Windows
may be displayed and manipulated with the
keyboard while this feature is not available
on the Macintosh. Applications must be
'aware' of limitations of portability and be
prepared to work within these bounds. This
will involve minimizing the use of non-
portable features, accepting some
unavoidable differences and making sure
these do not affect the core functionality.

One important issue in building portable
applications is the issue of look and feel. If
the same application is being delivered on
several systems, the developer has three
options for the application's look and feel.
He can support a common look and feel. He
can use the look and feel of each native
platform. Supporting native look and feel
can add to the complexity of a portable
design by affecting the operation of higher
level, system independent code. With
significant additional effort, it is possible
can allow the user to select the
application's look and feel.

Cognits: Writing Portable Code 4
Contrast Between Windows and the

Macintosh

Memory

Both the Macintosh and Windows offer
handles to allow the allocation of
relocatable blocks of memory. In both
cases, system dependent structures are
frequently handles to the actual data.
Handles are relics of the days when both
the Mac and the PC had very limited
memory. Today, both systems offer virtual
memory that, together with the general
availability of cheaper memory, massively
increases the memory available to an
application. On both the Mac and the PC,
advanced C compilers implement malloc in
manner that reduces memory
fragmentation. The use of malloc for
program structures is portable and rarely
costly. Since, as I discuss below, all system
dependent structures must be treated as
opaque by system independent portions of
the system, the system independent code
can ignore all uses of handles. All accessible
memory can be treated as pointers.
Classically the PC has had to support a
number of memory models that mix 16 and
32 bit pointers. This forced the distinction
between far and near pointers. At this time
there is little reason not to use the large
model under Windows 3.1 that treats all
pointers as 32 bits (segment + offset).
Under Windows NT a flat 32 bit address
space is available. Windows defines a
number of data types such as LPSTR and
LPRECT. Under the interesting memory
models these usually translate into more
conventional types: char * and Rect *.

Drawing

Ports and Bitmaps

All GUIs implement three basic structures.
There is some structure into which the
system can draw. On the Macintosh this is a
GrafPort (CGrafPort and GrafPort will be
synonymous for this discussion.) . In
Windows, the equivalent structure (with
significant differences discussed below) the
structure is an HDC. In the interests of
neutrality I use a system dependent type:
DrawPort to represent both structures. Each
has ways of specifying font, color, pen type
and clipping.

Associated with every DrawPort is a region
for drawing that I call a BitMapPtr. This
region may be a window on the screen or
an off screen buffer. Under Windows it is
possible to change the BitMapPtr associated
with a DrawPort. On the Macintosh, while
this is possible, usually the two are tightly
associated. On the Mac, the DrawPort has
foreground and background colors and
pattern built in. On the PC an HDC has a fill
and line brushes holding this information.
This difference requires additional
information to be attached to the DrawPort
structure. To emulate the behavior of the
Macintosh when the pen pattern is
changed, the PC must build new brushes
using the current foreground and
background colors. This information
therefore must be part of the DrawPort. The
Structure I created for a DrawPort has an
HDC, foreground and background Colors,
pattern, font and an associated window.

A third GUI object is a window on the
screen. Every window is associated with a
DrawPort and implicitly contains a
BitMapPtr. Neither Mac nor PC encourages
the direct manipulation of a window's
bitmap. In MS Windows and many X
Windows systems each control is treated as
a separate child window. Child windows
must be located within a parent window and
are considered as dependent on the parent.
For portability, the windows referred to in
this paper are only parent windows.
The Macintosh supports the concept of a
current Port. Drawing is performed by
calling SetPort (or SetGworld) and then
performing drawing. Under MS Windows
(and also X Windows) the affected DrawPort
is part of all drawing calls. A simple
approach is to provide Windows with a
hidden global DrawPort that can be set with
calls to SetPort and returned by

Cognits: Writing Portable Code 5
GetPort. Rather than using the same name
as the Macintosh calls, I use similar names:
SetThePort and GetThePort.
The Mac and Windows support the concept
of pulldown and popup menus. On the
Macintosh, pulldown menus are located in a
global menu bar representing the menus of
the active application. In MS Windows,
menu bars are located within individual
windows with no global menu bar. The
appendix lists neutral routines for building
and manipulating menus.

Resources
Resources on the Macintosh have the
following characteristics. Resources are
identified by a four letter type a resource
number and an optional name. Resources
may be read, written, and searched by
either name or number. They may be part
of an application, a separate resource file or
an other file's resource fork. In Windows
resource name and type are both strings.
Resources are developed at compile time
and may not be modified by a running
application.
The unification provided to deal with
resources is to minimize their use.
Resources dealing with non portable types
such as Dialog, control and code are
avoided. String, Picture and Icon resources
are treated as read only. Icon and Picture
resources return appropriate opaque types.
Cognits resource manager allows all
applications to write custom resources. On
the Macintosh these custom resources are
treated as conventional resources. On the
PC, a separate file similar to a preference
file is created in the system directory to
hold an application's read/write resources.

Opaque Objects
Opaque Mac Windows
DrawPort CGrafPort HDC
WINDOWPtr Window HWND+
MENUBARPtr MenuBarHandle Custom
MENUPtr MenuHandle HMENU
MENUItem Custom Custom
ICONPtr CIcon
PICTUREPtr PictureHandle MetaFile
DIRECTORY int string
REGIONPtr RgnHandle HRGN

Implementation of Macintosh Drawing
Calls

The portable interface uses standard
Macintosh drawing calls for most drawing
operations. This section illustrates samples
of how such calls are implemented under
Windows. (I will include complete code
listings for the basic calls in the conference
CD.) The commands I support are Paint,
Frame, Fill, Invert, PointIn and Designate
(see below) for structures Rect, Oval,
RoundRect, Arc and Polygon. All except
Designate and PointIn are supported
directly with standard Mac traps, so this
section will be concerned with the
generation of equivalent behavior on the
PC.

The concept of a Macintosh pen is divided
into three objects under Windows. A Brush
is for filling areas. A Pen is for drawing lines
and framing and TextColor is for drawing
Text.

The system on the PC holds the following
globals:

HDC CurrentDC - This is the equivalent of
the current port on the Mac and is altered
with a call to SetThePort.
refcolor TheForeColor - foreground color
in Windows internal form.
refcolor TheBackColor - background color
in Windows internal form.
boolean ValidCurrentBrush,
ValidCurrentPen Setting the foreground
color requires the construction of a number
of brushes and pens. These are not actually
built until a drawing command is issued.
This flag is set true if the current set of pens
and brushes does not require updating.
Altering the foreground or background color
will invalidate this flag, forcing new pens
and brushes to be constructed before
drawing.

ToLPRECT is a macro of mine that converts
a Rect * to a Windows RECT.

Cognits: Writing Portable Code 6
Helper Routines

 These routines are needed to build the
needed Windows pens and brushes to
implement the Windows equivalent of the
standard Macintosh drawing calls.

void ValidateCurrentBrush(void)
{
 HBRUSH NewBrush,DisplacedBrush;

 if(ValidCurrentBrush) return;
 // Brush is Valid

 // Make a brush
 NewBrush =
MakePatternBrush(CurrentPattern);
 // Instantiate it
 DisplacedBrush =
SelectObject(CurrentDC,NewBrush);
 // Destroy old brush
 if(DisplacedBrush)
 DeleteObject((HANDLE)OldBrush);
 CurrentBrush = NewBrush;

 ValidCurrentBrush = true;
 // Now brush is valid
 // Make sure Pen is valid as well
 ValidateCurrentPen();
}

// Make a Pen with the current
// foreground color. Only solid
// pens allowed
void ValidatePen(void)
{
 HPEN OldPen = CurrentPen;
 HPEN NewPen,DisplacedPen;
 if(ValidCurrentPen) return;

 // make a new pen
 NewPen = CreatePen(

0,
CurrentLineWidth,
TheForegroundColor);

 // select it
 DisplacedPen =
SelectObject(CurrentDC,NewPen);
// Dispose the Old pen
 DeleteObject(DisplacedPen);
// remember the New pen
 CurrentPen = NewPen;
 // Valid pen made
 ValidCurrentPen = true;
}

// This makes and Selects a brush from // a

Pattern and the current foreground
// and background colors
// return is the previous brush that // must
be restored after a Fill.
HBRUSH MakePatternBrush(const Pattern
*ThePattern)
{
 // Select this as the current brush

OldBrush =
SelectObject(CurrentDC,NewBrush);

return(OldBrush); // remember Old
so we can restore
}

// This selects as current and destroys
//the current brush
void SetAndDestroyBrush(

HBRUSH OldBrush)
{

HBRUSH PrevBrush =
SelectObject(CurrentDC,

OldBrush);
DeleteObject(PrevBrush);

}

//
// This code implements
MakePatternBrush
// the critical routine to implement
// FillRect, FillOval under windows
//
// This is a BITMAPINFO object for a 2 Color
bitmap
typedef struct {
 BITMAPINFOHEADER hd;
 RGBQUAD bmiColors[16];
 char d[32]; // actual data
} PatternDIData;

// PURPOSE : Make a brush with 2 colors
// ForeColor on 1 and BackColor on 0
*
HBRUSH MakePatternBrush(const char
*ThePattern)
{
 PatternDIData P;
 HBRUSH TheBrush;
// treat Solid patterns as special cases
// BLACK_PATTERN is all 1 s

Cognits: Writing Portable Code 7
 if(EquivalentPattern(ThePattern,
 BLACK_PATTERN)) {
// CreateSolidBrush is a Windows call
 TheBrush =
 CreateSolidBrush(TheForegroundColor);
 return(TheBrush);
 }

// Make a DeNovo Brush
// Clear the structure
 memset(&P,0,sizeof(PatternDIData));
// Standard initlialization
 SetupPatternInfo(&P,ThePattern);
// Set up brush
 TheBrush =
` CreateColoredPatternBrush(
 &P,
 &CurrentForeColor,
 &CurrentBackColor);
 return(TheBrush);
}
//
// Initialize a PatternDIData to a Pattern
//
void SetupPatternInfo(PatternDIData *P,
` const char *ThePattern)
{
 P->hd.biSize =
sizeof(BITMAPINFOHEADER);
 P->hd.biWidth = 8; // 8 by 8 bitmap
 P->hd.biHeight = 8;
 // Compression - none
 P->hd.biCompression = BI_RGB;
 P->hd.biPlanes = 1; // Always
 P->hd.biBitCount = 4; // ???
 // Map to nibbles
 Pattern4ToData(ThePattern,P->d);
 P->hd.biSizeImage =
 P->hd.biWidth * P->hd.biHeight *
 P->hd.biBitCount / 8 ;

}

// Turn a pattern into a 32 char array
// of packed 4 bits each nibble is 0 or 1

void Pattern4ToData(const char
*ThePattern,
 char *TheData)
{
 int i,k,j;
 unsigned int xh;
 j = 0;
 // bit pattern as data read out the
 for(i = 0; i < 8; i++) {
 xh = ThePattern[i];
 for(k = 0; k < 4; k++) {

 // Set nibble 1
 if(xh & 1)
 heData[j] = 0x10;
 else
 TheData[j] = 0;
 xh >>= 1;

 // set nibbble
 if(xh & 1)
 TheData[j] += 0x01;

 j++;
 xh >>= 1;
 }
 }
}

//
// Make a Brush with a PatternDIData
// structure setting the
// colors to the Current Fore and
// background colors
static HBRUSH CreateColoredPatternBrush(
 PatternDIData *P,
 const COLOR *ForeColor,
 const COLOR *BackColor)
{
 HBITMAP NewBitmap;
 HBRUSH TheBrush;
 // Set the Colors
 P->bmiColors[0].rgbRed
` = ForeColor->red;
 P->bmiColors[0].rgbBlue
 = ForeColor->blue;
 P->bmiColors[0].rgbGreen
 = ForeColor->green;

 P->bmiColors[1].rgbRed
 = BackColor->red;
 P->bmiColors[1].rgbBlue
 = BackColor->blue;
 P->bmiColors[1].rgbGreen
 = BackColor->green;

// Windows Call CreateDIBitmap
 NewBitmap =CreateDIBitmap(CurrentDC,

Cognits: Writing Portable Code 8
 (BITMAPINFOHEADER *)P,
 CBM_INIT, // Is Initialized
 (unsigned char *)P->d,
 (BITMAPINFO *)P,
 DIB_RGB_COLORS);
// Windows Call CreatePatternBrush
 TheBrush =
 CreatePatternBrush(NewBitmap);
.// Destroy the Bitmap we Created
 DeleteObject(NewBitmap);
 return(TheBrush);
}
Implementation of Mac Drawing

Calls

//
// Windows version of FrameOval
//
void mswFrameOval(const Rect *TheRect)
{
 // NULL_BRUSH says do not fill
 HBRUSH OldBrush =

SelectObject(CurrentDC,
GetStockObject(NULL_BRUSH));

 ValidateCurrentPen();
// make sure Pen is OK

 Ellipse(CurrentDC,
TheRect->left,
TheRect->top,
TheRect->right,
TheRect->bottom);

 // Restore original brush
 SelectObject(CurrentDC,OldBrush);
}

//
// Windows version of FillRect
//
void mswFillRect(

const Rect *TheRect,
const Pattern *ThePattern)

{
 // convert to windows rect
 RECT WinRect = ToLPRECT(TheRect);
 // Create a brush from the pattern

HBRUSH TheBrush =
MakePatternBrush(

*ThePattern);

// Fill with the created brush
FillRect(CurrentDC,&WinRect,

TheBrush);
// Destroy the brush

 DeleteObject(TheBrush);
}

// System Independent Polygon Structure
typedef struct {
 int NPoints; // the number of Points
 Point *ThePoints; // an array of
//vertices Point is the Mac Point
} POLYGON;

//
// Windows version of InvertPoly
//
void mswInvertPoly(POLYGON *ThePolygon)
{

HRGN TheRegion;
// Conversion is needed since Windows
// and WindowsNT
// use different POINT structures and
// POLYGON is system independent
LPPOINT WinPoints =

PolyToWinPoints(ThePolygon);

TheRegion =
 CreatePolygonRgn(WinPoints,

ThePolygon->NPoints,
WINDING);

InvertRgn(CurrentDC,
TheRegion);

delete [] WinPoints;
// get rid of the points
DeleteObject(TheRegion);

}

Designate

Even on a single system it is difficult
to specify screen depth and color
capabilities . In writing code for multiple
systems this becomes doubly difficult. In
many applications the specific fill of an area
is less important than the fact that one area
is different from another. Consider, for
example, the problem of drawing a pie
chart. Each slice of the pie needs to be
distinctive. There is, however, no reason to
select a specific color for one

Cognits: Writing Portable Code 9
particular slice as long as the slice and
labels identifying that slice are filled in the
same manner. Designate commands, such
as DesignateRect and DesignatePoly, take
an index and ask the system to fill the area
in a manner that makes areas with different
indices appear different. Thus the code

DesignateRect(R1,1);
DesignateRect(R2,2);
DesignateOval(R3,1);

will draw a Rect filled with pattern1, a Rect
filled with pattern 2 and an oval filled with
pattern1. In one bit, monochrome systems,
the Rects are filled with differing patterns.
On color systems, the Rects are filled with
solid colors for lower indices and different
colored patterns for higher indices .
The color capability of the system may be
temporarily disabled, for example when
printing to a monochrome printer. Under
these conditions fills with the Designate
command will remain distinct although they
will not replicate what the user sees on the
screen.

Files

The portability Files may be addressed
using UNIX file commands. These are
implemented on all systems. However,
there are a number of differences between
files on the Mac and the PC. Files on the
Mac may have 31 character names
including spaces and other non
alphanumeric characters. Case is preserved
in file names but not used in searches.
Directories in a full path name are
separated by ':' and volumes by '::' . On the
PC, file names have up to 8 characters of
name plus an optional 3-character
extension. Case is not remembered in file
names. Directories in a full path name are
separated by '\' and volumes by ':' . In
addition to file name, files on the Macintosh
store finder information, most importantly
File and Creator types. The extension is the
only data available in Windows to store this
information. Windows NT will implement yet
another file system supporting longer file
names.

In the discussion above a system
independent call for invoking a file open
dialog is discussed.

Events

While the actual events supported on the
Mac and Windows are very similar, the
handling of those events is very different. is
very different between Windows and the
Macintosh. The normal Mac event handler is
written

EventRecord TheEvent;

WaitNextEvent(everyEvent,
&TheEvent,10L,NULL);

... Code to Process Event

Under Windows the code to process a single
event looks like this

MSG msg;

// receive a message
 GetMessage(&msg, NULL, 0, 0); //
obscure, poorly documented
// processing

TranslateMessage(&msg);
// send to the window's message handler
 DispatchMessage(&msg);

Every Window supplies a message handler
routine. Events are passed directly to the
Window's event handling routine and no
further processing is expected. This
represents a very different paradigm from
the Mac with event handling being window
based rather than global.

The Windows event handling procedure
looks like the following code. TheWnd is the
receiving window, Message is a message
type, similar to Event.what field. wParam
and lParam are two parameters whose
interpretation depends on Message. For
mouse events lParam holds vertical and
horizontal mouse position in the upper and
lower 16 bits of the parameter.

LRESULT CALLBACK windproc (
HWND TheWnd,
unsigned int Message,
 unsigned int wParam,

Cognits: Writing Portable Code 10
LONG lParam)

{
switch(Message)
{
case WM_COMMAND:

... Code ...
case WM_LBUTTONDOWN:

... Code ...
break;

... Many Other Cases ...
// Pass unhandled messages

 // to Windows for processing
default:
return DefWindowProc(

 hAWnd, Message,
 wParam,lParam);
}

}

Another major difference is that Windows
supplies default event handlers. Events that
a window cannot handle are passed to
a default handler. This is not a bad
approach. There is really no reason why
dragging a window to a new location cannot
be handled by the system with the
application merely receiving an event
indicating that a drag has occurred.

A significant difficulty with this design is
that most of the application lies in the case
statement associated with the window. This
makes the code difficult to maintain and
modularize. Cognits chose to modify
Windows event handling to emulate the
way events are handled on the Mac. The
windproc routine was written so that the
only action of each clause in the case
statement was to determine if the event
required handling by the application. Events
requiring handling merely build a Macintosh
style event record , set a flag showing that
there is an event to handle and return.
Events that can be handled by the system
reset the flag so no event is passed on and
default to the built in handler.

There are differences in the types of events
available on the two systems. Windows
supports a two or three button mouse
whereas on the Mac multiple buttons are
emulated by holding down keys while
clicking the mouse. Keystrokes that are to
be handled by the system, such as
command keys, differ as well. In the
interests of portability, Cognits
preprocesses events dividing them into

added types depending on modifiers. Mouse
events, for example, are treated as if there
are a large number of buttons on the
mouse. Buttons are given neutral color
names: Black, Red, Green ... so events are
translated to BlackMouseDown,
BlueMouseDown ... There is a system
dependent mapping of buttons and keys to
events so BlackMouseDown is pressing the
most common button. RedMouseDown is
Command Click on the Mac and both alt +
LeftMouseDown and RightMouseDown on
the PC. Double clicks are also mapped to
colored buttons.

This preprocessing means that subsequent
event handlers need not be concerned with
testing keys to see what actions are
required. A separate handler is generated
for each type of mouse click. The one
concession is that a system dependent call
called GuaranteeMouseClick is provided.
This should be called when a commitment is
about to be made. It is used to make sure
that the click being processed is not the
first click in a double click sequence.

Standard events, updates, key strokes and
mouse clicks, are quite similar across
systems. Higher level events such as
AppleEvents on the Mac or DDE events on
the PC require other layers to process in a
similar manner. These are discussed in
detail below.

A number of events such as dragging a
window, clicking a close box or resizing a
window can easily be handled in
centralized, generic code. MS Windows and
X both operate in this manner with the
window subsequently receiving notification
of any relocation, resize or destruction.
Cognits chooses to treat these and several
others as 'SystemEvents'. These are filtered
by the event handler and not passed to
higher level code. AppleEvents also fall into
this category since they are not handled by
the normal event handling mechanism.

Cognits: Writing Portable Code 11
COLOR

Colors on the Macintosh are designated as
RGBColor with 3 16 bit values representing
red, green and blue. Windows uses several
structures to represent color but in all cases
a single byte is used for red, green, and
blue values. Windows routines use a 32 bit
COLORREF structure, generated using one
of several possible macros from red, green,
and blue data. When filling areas, Windows
will by default fill the exact color requested
by dithering palette colors. The effect is
rarely pleasing. Under Windows Cognits
forces color selection from the palette to
suppress dithering. Cognits uses a Color
structure as follows:
typedef struct {

unsigned char red,green,blue;
unsigned char palette;

} COLOR;
Here palette is an optional entry into a 256
color palette. This entry and its use is
system and hardware dependent.
Translation between this structure and the
colors used by native calls is
straightforward. Other calls allow systems
with 256 color hardware palettes to support
palette animation.

Controls

In the Macintosh, controls are regions of a
window capable of responding to user
events. MS Windows and X Windows treat
controls as separate sub-windows capable
of independently receiving and responding
to events. Treating controls as separate
windows pushes much of the work of
clipping drawing and distributing events
onto the operating system. There are three
costs associated with this approach. First,
sub-windows are much more expensive
structures in terms of both memory and
time than drawn regions within a window.
Second, directly passing events to controls
makes it more difficult for an application to
control event handling. When all events are
sent to a central event manager, a window,
and finally an active control, there a
number of places where events can be
monitored, delegated, and intercepted. In
the Windows model, where events are sent
directly to the affected control, it is harder
to control and monitor their flow. Third, the
difference in the two models of control
increases the problems of portability.

From the point of view of the operating
system, a Cognits window is merely a blank
canvas. All controls are active regions
recognized by the application, not by the
operating system. This is essentially the
approach taken by Hypercard. It allows the
location of controls to be determined at run
time and to vary with the contents of the
window. An extremely common Cognits
paradigm is to create a window, add a
number of controls, request that they
distribute themselves with a reasonable
algorithm, and finally resize window to the
size needed hold the included controls.

Buttons, Radio Buttons, CheckBoxes and
scroll bars are not difficult to implement
with elementary drawing commands. For
Radio Buttons and CheckBoxes there are
real advantages to this approach since
groups of these may be considered as a
single control and drawn and managed
accordingly. This allows the action of a
RadioButton to be treated as part of the

Cognits: Writing Portable Code 12
control's handler rather than as part of the
application's. It also allows groups of
CheckBoxes to be sized so that all elements
of the group have similar size.

Text Fields

Both the Macintosh and Windows offer the
equivalent of a TEHandle. In earlier
implementations of a Text Control on the
Macintosh, a real TEHandle was embedded
into a higher level object. Later versions
implemented the equivalent functionality
using basic text draw commands. The
implementation is based on an excellent set
of articles by Martin Minnow (Minnow 90a,b)
The decision to reimplement as complex a
structure as a TEHandle was not taken
lightly. Portability, the ability to deliver the
same functionality on all systems was a
major factor in this decision. While MS
Windows supplies a text control similar to a
TEHandle, its operation at both user and
code level is not identical with the
Macintosh control. X Windows supplies no
such control and forces a developer to write
the needed code anyway.

Coded text fields offer both advantages and
disadvantages over the standard controls.
Cognits text fields do not offer styled text or
mixing fonts, sizes, and styles within a
single field. This capability was not felt to
be important in most applications. Cognits
does support editing text exceeding 32K.
Once text fields were coded, Cognits
distinguished a number of classes. Output-
only fields, which support display but not
editing, can be considerably simpler than
fields requiring full, multiline editing
capabilities. Output-only fields can easily be
subclassed to support tabs, multicolor text,
and column delimiters - capabilities that are
difficult to mix with the ability to edit the
text. The vast majority of editable text fields
support only a single line and can have a
considerably simpler structure than
multiline fields. Event handling in multiline
fields is modified so that, in addition to
double clicks supporting selection by word,
triple clicks support selection by line, and
quadruple clicks select the entire field.
These varied capabilities show that while
there is a significant investment in
emulating system-supplied capabilities,
there are rewards in greater functionality
and control.

Higher-Level Operations

Both Windows and the Macintosh provide
dialogs for common high level operations
including, opening files, selecting
directories, and selecting colors. A portable
program should be able to use these
services. The key in all cases is to convert
the request from a system dependent
operation into system independent terms. A
simple dialog such as GetColor may be
converted to a portable form merely by
converting arguments to portable structures
as shown below.

Mac
Boolean GetColor(Point Where,

String255 Prompt,
RGBColor *Selection,
RGBColor *Default);

Portable
boolean GetTheColor(Point Where,

const char *Prompt,
// convert to portable char *

COLOR *Selection,
// convert to portable COLOR *
// (see above)

COLOR *Default);
// convert to portable COLOR *
// (see above)

File requests follow the same principle but
are somewhat more complex. The portable
version of a file name and a directory is a
string indicating the full path. The extension
may be used on the PC as a version of the
file type and may be used to filter data. The
PC and X Windows do not support creator
type as a separate parameter. Under
Windows, using a unique extension for each
creator type allows icons to be assigned
correctly. The two general file operations
supported are retrieving the name of an
existing file and selecting the name of a
new file, called as follows.

Cognits: Writing Portable Code 13
boolean GetExistingFile(char **Name,

char* StartDirectory,
char **TheCreator);

where Name starts as the default name and
returns as the selected full path name.
Directory starts as the directory, and
TheCreator returns as the Creator on the
Mac and the Extension on the PC.
GetExistingFile is implemented in the Mac
as a call to SFGetFile using a routine to
interconvert a frefnumber and a
vrefnumber pairs into path names.

boolean NewFileName(char **Name,
char* StartDirectory,
char **TheCreator);

is a similar portable call to create a new file.

One feature requiring the modification of
Macintosh dialogs is a call to return the
name of a folder. This dialog provides that
service on all systems. It converts to a
modified SFGetFile dialog on the Mac and a
similarly modified dialog on the PC.

char *GetExistingDirectory (char
*StartDirectory);

These levels of abstraction are important to
allow a library to use high level dialogs
without tying the code to any one system.

Summary

Development of portable code poses unique
and interesting challenges. Portable
applications look very different from
applications developed to run on only one
platform. The application must be written
from the ground up to maximize the
fraction of the code that is system
independent. The resulting application will
involve compromises and will not be the
best and most efficient application for any
one system.

References

Steven M. Lewis , Cognits: A Portable
Library of Intelligent Classes, Macintosh
Developers Conference 1992.
Martin Minnow, Mouse Track and Field I,
MacTutor 6:2,1990
Martin Minnow, Mouse Track and Field I,
MacTutor 6:3,1990

